

I

J E

E

CE
International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626

 and Computer Engineering 3(1): 212-217(2014)

Defect Tracking System

Sujata Solanke* and Prof. Prakash N. Kalavadekar**
*
Research Scholar, Department of Computer Engineering,

S.R.E.S, College of Engineering, Kopargaon, (MS), India

**Assistant Professor, Department of Computer Engineering,

S.R.E.S, College of Engineering, Kopargaon, (MS), India

(Corresponding author: Sujata Solanke)

 (Received 05 March, 2014 Accepted 7 June, 2014)

ABSTRACT: For the improvement of software quality now a days Defect Tracking System has been

developed. There are various already existing methods like Redmine, Bugzilla etc. which doesn’t meet the
criteria of perfect defect tracker. This paper is aimed at developing an online defect tracking system useful
for applications developed in an organization. The Defect Tracking System (DTS) is a web based solicitation
that can be accessed throughout the organization. In this system can be used for sorting defects against an

application/module, assigning defects to individuals and tracking the defects to resolution. This solicitation
contains features like email notifications, user maintenance, user access control, report generators etc. This
paper has been planned to be having the view of distributed architecture, with centralized storage of the

database. The system for the storage of the data has been scheduled. Using the paradigms of MS-SQL Server
and all the user interfaces has been designed using the ASP.Net technologies. The principles of security and
data protecting mechanism have been given a big choice for proper procedure. The solicitation takes care of

different modules and their related reports, which are created as per the applicable strategies and principles
that are put forwarded by the administrative staff. This system will overcomes all problems of previously
existing bug trackers.

I. INTRODUCTION

The Defect Tracking solicitation allows you carry out

four important tasks finding bugs, changing bugs

reporting, about bugs, application maintenance while

using components. The role-based security mechanism

implemented in the Defect Tracking System grants

access to each of these features to the roles defined in

the system. Each operator should be allocated to at least

one role so they can log in and achieve one of these

tasks. Defect management is critical to closing the loop

between requirements, implementation and verification

and validation. Archaic defect tracking management,

implemented in a standalone fashion, can no longer

address the difficulty and pace of change in modern

software development. Defect management processes

must be firmly interlinked with all of the other software

development procedures. The defect management

process contains the following elements:

A. Defect Discovery

 Identification and reporting of prospective defects. The
defect tracking software must be user friendly so that

people will use it, but ensure that the minimum

essential information is achieved. The information
captured here should be enough to replicate the defect
and allow development to determine origin and

influence

B. Defect Analysis & Prioritization

The development team determines if the defect report
relates to an actual defect, if the defect has already been

reported, and what is the impact on development team.
As an integrated development solution Integrity
supports all other disciplines in the application lifecycle

- not just defect management. Defect management
software cannot achieve the seamless links among all
activities and assets that are needed in today’s fast-

paced and difficult development environments.
Integrity increases product quality and customer
satisfaction by facilitating defect tracking across

product variants. Relating these linkages with
unprecedented process flexibility makes Integrity the
best choice for and priority of the defect is. Prioritizing

and scheduling of the defect resolution is often part of
the overall change management process for the
software development association.

 Solanke and Kalavadekar 213

C. Defect Resolution

Development team determines the source cause,
implements the changes needed to fix the defect, and
documents the details of the resolution in the defect

management software, including ideas on how to verify
the defect is fixed. In organizations using software
product lines approaches, or other shared component

methods, defect resolution may need to be coordinated
across several branches of development.

D. Defect Verification

The build containing the resolution to the defect is

identified, and testing of the build is performed to
ensure the defect truly has been resolved, and that the
resolution has not introduced side effects or regressions.

Once all affected branches of development have been
verified as resolved, the defect can be closed.

E. Defect Communication

This comprehends automatic generation of defect
metrics for management reporting and process
development purposes, as well as visibility into the

presence and status of defects across all disciplines of
the software addressing challenges such as:
(i) Discovery and Warning

(ii) Defect Determination across Multiple Lines of
development
(iii) Automatic Defect Verification
Further paper is organized as follows: section 2, gives

literature survey in which a short summary of existing
solutions of the problem. Section 3, implementation
details gives the brief idea of design procedures

affected branches of development have been verified as
resolved, the defect can be closed.

II. LITERATURE SURVEY

User complains the existing solutions from the point of

their usability such as they couldn’t recognize the
developers or testers who created the defects. These
already existing systems couldn’t keep track of the
already detected bugs. In general, the overviewed

solutions give excellent results under the exact problem
of interest, but they do not report the general problem
of interest for this research.

It gives a brief for each of selected solutions, as per the
following main points:
(a) The basic information of all solution,

(b) Exact details for each selected solution,
(c) Additional development trends of the approach, and
(d) A criticism of the solution, and finally

(e) Possible developments that could overcome the
noticed drawbacks.
It determines with a classification of each expanded

solution.

The classification criteria were selected to reflect the

essence of the basic viewpoint of this research. It will
summarize all significant parts of elaborated solutions.
Presentation of existing solutions and their

disadvantages
This section is distributed in several subsections, one
per each solution.

A. Bugzilla

Bugzilla is very popular, actively maintained and bug
free tracking system, used and established together with
Mozilla, giving it considerable authority. Bugzilla is

based on Perl and once it is set up, it seems to make it
user friendly. It's not highly customizable, but in an odd
way, that may be one of its features: Bugzilla

installations tend to look pretty much the same
wherever they are found, which means many
developers are already familiar to its interface and will

feel that they are in familiar territory. Bugzilla has a
system that will send you, another user, or a group that
you specified. Bugzilla has very innovative reporting

systems and you can create different types of charts
with line graph, bar graph or pie chart.

B. Mantis

Mantis is a free web-based bug tracking application. It
is in the PHP scripting language and works with
MySQL, MS SQL, and PostgreSQL databases and a
web server. Mantis can be installed on Windows,

Linux, Mac OS and OS/2. Almost any web browser
should be able to function as a client. It is released in
the terms of the GNU General Public License (GPL).

The main objection is its interface which doesn’t meet
modern standards. On the other hand, is easy to
navigate, even for inexperienced users. There not exist

some innovative features such as charts and reports. In
short, the whole system is untidily done; there are
plenty of bugs and very little functionality.

C. BugTracker.NET
BugTracker.NET is a free, open-source, web-based bug
tracker or customer support issue tracker written using

ASP.NET, C#, and Microsoft SQL Server Express.
BugTracker.NET is easy to install and learn how to use.
When you first install it, it is very simple to setup and
you can start using it.

 Later, you can change its configuration to handle your
requirements. It has a very intuitive interface for
creating lists of bugs. It has two useful features. First of

them is a screen capture utility that enables you to
capture the screen, add annotations and post it as bug in
just a few clicks. The second feature is the fact that it

can incorporate with your Subversion repository so that
you can associate file revision check in with defects.

 Solanke and Kalavadekar 214

D. Flyspray

Flyspray is a web-based defect tracking system written

in PHP. Flyspray is free software, released under the
General Public License. This essentially means that you
can get Flyspray and use it free of charge. The source

code is available, and everyone is welcome to amend it
to suit their needs. Its web pages describe it as
“uncomplicated”, and the list of features includes:

multiple database support (currently MySQL and
PGSQL), multiple projects, 'watching' tasks, with
notification of changes (via email or Jabber),

comprehensive task history, CSS theming, file
attachments, advanced search features, RSS/Atom
feeds, wiki and plaintext input, voting, dependency
graphs.

E. Redmine

Redmine is a flexible web-based project management
web solicitation. Written using Ruby on Rails

framework, it is cross-platform and cross-database.
Redmine is open source and released under the terms of
the GNU General Public License. Redmine is flexible

issue tracking system. You can define your own
statuses and issue types. He supports multiple projects
and subprojects. Each user can have a different role on

each project. Interface is very simple, intuitive and easy
to navigate. Shortly, this is very good product and our
recommendation.

F. Bug-Track

Bug-Track is web-based defect and bug tracking
software permits you to document manage and assign
all of your defects and tasks and allows you to organize

your bugs, defects or issues into distinct projects. It can
run on any web-server like Microsoft, Linux, UNIX,
etc. Since it is a commercial application it is expected

that it is better than other free products.

But it isn’t true. He has nothing new and improved than
other free bug tracking systems. One better thing is fact

that he has more spontaneous interface than others and
that is his only advantage.

G. Bugzero

Bugzero is a web-based bug, defect, issue and incident
tracking software. Its single code based application
which supports Windows and UNIX (based on Java™)

and supports database systems as well as Access,
MySQL, SQL Server, Oracle, and etc. Bugzero can be
modified for software bug tracking, hardware defect

tracking, and help desk customer support issue and
incident tracking. Bugzero have intuitive interface but
he lacks form features. The main disadvantage is the
fact that Bugzero is a commercial product and you can

find much improved product for free.
From all above presented, we conclude that, among the
existing solutions, no one of them can be treated as the

best one, for the general solution of this research. Each
of them has some advantages and disadvantages. Some
of them have some feature more than others but in the

general, the set of features are the identical..

III. PROPOSED WORK

A. Module 1:- Admin

Defect management is crucial to closing the loop

between requirements, implementation and verification
and validation. Traditional defect tracking management,
implemented in a standalone method, can no longer

address the complexity and pace of change in modern
software development. Defect management processes
must be strongly interlinked with all of the other

software development processes. The defect
management process contains the following elements:

Fig. 1. Process Flow Diagram.

 Solanke and Kalavadekar 215

In Defect Discovery it recognizes and report the

potential defects. It ensures that the minimum essential
information is captured. The information captured here
should be advantageous to determine root cause and

influence [9].
In Defect Examination & Prioritization, The team
determines if the defect report is identical to an actual

defect, if the defect has already been occurred, then find
out the effect and priority of the defect is. Prioritization
and scheduling is part of software development
application and defect resolution is often part of it.

In Resolving Defect, the development team determines
the origin of cause; implements the changes needed to
fix the defect, and documents the details of the

resolution in the defect management software,
including ideas on how to judge the defect is fixed.
In Verification of Defects, The build holding the

resolution to the defect is recognized, and testing of the
build is performed to ensure the defect truly has been
fixed.

The Admin achieve automatic generation of defect
metrics for management reporting and process
development purposes, as well as visibility into the

presence and status of defects across all disciplines of
the software development team.
Admin considering the following challenges such as:
(i) Detection and Notification

(ii) Defect Determination across Multiple Lines of
Development
(iii) Automatic Defect Verification [4][6].

B. Module 2: - Developer

There are many ways in which we can categorize.
Below are some of the classifications of Defects:

Severity Wise:
Major: A defect, which will cause a noticeable product
failure or departure from requirements.

Minor: A defect that will not cause a failure in
implementation of the product.
Fatal: A defect that will cause the system to crash or

close shortly or influence other solicitations.
Work product wise:
SSD: A bug from System Study document
FSD: A bug from Functional Specification document

ADS: A bug from Architectural Design Document
DDS: A bug from Detailed Design document Source
code: A bug from Source code

Test Plan/ Test Cases: A bug from Test Plan/ Test
Cases User Documentation: A bug from User manuals,
operating Manuals

Status Wise:
- Open
 -Closed

-Deferred
-Cancelled

These are the major ways in which defects can be

classified. [4], [9]

C. Module 3:- Tester

The step in defect life cycle varies from company to

company. But the basic flow remains the same.
However, below I'm describing a basic flow for Bug
Life Cycle:

A Tester finds a bug. Status --> Open
Test lead review the bug and authorize the bug. Status -
-> Open
Development team lead reviews the defect. Status -->

Open
The defect can be authorized or unauthorized by the
development team. (Here the status of the defect / bug

will be Open (For Authorized Defects) & Reject (For
Unauthorized Defects).
Now, the sanctioned bugs will get fixed or deferred by

the development team. Status of the fixed bugs will be
Fixed & Status will be postponed for the bugs which
got deferred.

The Fixed defects will be again re-tested by the testing
team (Here based on the Closure of the defects, the
status will be made as Closed or if the bug still remains,

it will be re-raised and status will be Re-opened [10].
The above-mentioned cycle continues until all defects
get fixed in the application.
The purpose of defect prevention is to identify the

defects and take corrective action to ensure they are not
repetitive over subsequent iterative cycles. Defect
avoidance can be implemented by preparing an action

plan to decrease or eliminate defects, generate defect
metrics, defining corrective Action and producing an
analysis of the origin causes of the defects [5].

Defect prevention can be accomplished by the
following steps:
(i) Analyze defect data with periodic review using test

logs from the execution phase: this data should be used
to separate and categorize defects by root causes. This
produces defect metrics highlighting the most creative

problem areas.
(ii) Identify development strategies.
(iii) Escalate issues to senior administration or customer
where essential.

(iv) Draw up an action plan to address exceptional
defects and improve development process. This should
be reviewed frequently for effectiveness and modified

should it prove to be ineffective.
(v) Undertake periodic peer reviews to verify that the
action plans are being adhered to.

(vi) Generate regular reports on defects by age. If the
defect age for a particular defect is high and the severity
is sufficient to cause concern, focused action needs to

be taken to resolution.
(vii) Categorize defects into: critical defects, functional
defects, and cosmetic defects.

 Solanke and Kalavadekar 216

The Track Defects sub process is designed to collect the

data required to calculate and monitor the quality of the
application, and also to control project risk and scope.
The process is considered so that those with the best

understanding of the customer priorities are in control
of defect prioritization. The business analyst monitors a
list of newly discovered issues using a defect tracking

system like the Siebel excellence module. These users
monitor, prioritize, and target defects with regular
frequency. This is typically done daily in the early
stages of a project, and perhaps several times a day in

later stages.
The level of inspection is escalated for defects
discovered after the project freeze date. A very careful

dimension of the impact to the business of a defect
versus the risk associated with introducing a late change
must be made at the project level. Generally, projects

that do not have appropriate levels of change
management in place have difficulty reaching a level of
system stability sufficient for deployment. Each change

introduced carries with it some amount of regression
risk. Late in a project, it is the dependability of the
entire project team, including the business unit, to

carefully manage the amount of change introduced.
Once a defect has been accepted to be fixed, it is
assigned to development and a fix is designed,
implemented, unit tested, and checked in. The testing

team must then verify the fix by bringing the affected
components back to the same testing phase where the
defect was found. This needs regression testing (re

execution of test cases from earlier phases). The defect
is finally closed and verified when the component or
module successfully passes the test cases in which it

was exposed. The process of validating a fix can often
have need of the re execution of past test cases, so this
is one activity where automated testing tools can afford

significant savings. One best practice is to define
regression suites of test cases that allow the team to
reexecute a relevant, comprehensive set of test cases

when a fix is checked in. Tracking defects also collect
the data required to measure and monitor system
quality. Essential data inputs to the deployment
readiness decision include the number of open defects

and defect discovery rate. Also, it is important for the
business customer to understand and grant the known
open defects prior to system deployment [2], [4], [12].

In a peer review, co-workers of a person who created
software work product examine that product to identify
defects and correct shortcomings.

Verifies whether the work product correctly satisfy the

specifications found in any predecessor work product,

such as requirements or design documents
Identify any deviation from standards, including issues
that may affect maintainability of the software.

Promote the exchange of techniques and education of
the participant. All temporary and final development
work products are candidates for review, including:

-Requirements specifications
-user interface specifications and designs
-architecture, high-level design, and detailed designs
and models

-source code
-test plans, designs, cases, and procedures
-software development plans, including project

management plan, configuration management plan, and
quality assurance plan [5].
The principle of a defect tracking workflow is to move

issues to resolution. When a defect is reported, system
may require the following to occur:
(i) Verify the defect. Is it really a defect? Is it

reproducible?
(ii) Assign resources to fix the defect. How much time
and cost will development and QA need?

(iii) Release the fixed defect. When will it be released?
Who approve releasing the change into a build? How
are code change moved into new builds?
These questions, which affect project management,

software development, QA, and release management,
can all be forced through a defect tracking organization.
For example, when a defect is added, it must be

reviewed by a QA team member to ensure its
correctness and authenticity. Once QA determine that a
defect exists, a project manager must prioritize and then

assign the defect to a developer to fix. After the defect
is fixed, QA must test and validate the fix. A build
manager must then ensure the fixed defect is released to

the next build. A customer may even perform customer
acceptance on the issue and verify the fix. Finally, the
defect is closed after the fix is verified in the latest

build or release [3], [4].
Defect Status:
- New: Default status when bug is reported
- Open: Indicates bug is assigned to review

- Reopen: Indicates testing team reopened the defect
which was closed earlier
- Fixed: Indicates bug is verified

- Closed: Bug is closed and waiting for authorization by
tester
- Rejected: Bug is rejected, rational for rejecting defect

to be provided [4], [11].

 Solanke and Kalavadekar 217

IV. INPUT OUTPUT SPECIFICATION AND
DISCUSSION

Testing is an integral part of any system or project. The

various objectives of Testing to obtain the expected
results:
(i) To uncover the errors in function logic

(ii) To verify that software needs the specific

requirement.

To verify that software has been implemented
according to the predefined standards

Category

no.

Type of

Tracking

Actual Results

1 Report

generation

Systems keeps track of

the defect and

generates report

2 Email

Notification

Sends an email to the

individual who created

defect along with the

module name

V. CONCLUSION

Defect Tracking System is very useful for removing

defects from project module. Only if features
mentioned in document are extended. In future users
may also be possibly notifying the name/Id of defect
creator so that organization can prevent their systems.

The project is identified by the merits of the system
offered to the user. The merits of this project are as
follows: -

(i) It’s a web-enabled scheme.
(ii) This task offers user to enter the data through
simple and interactive forms. This is very useful for the

client to enter the desired information through so much
simplicity.
(iii) The user is mainly more worried about the validity

of the data, whatever he is entering. There are checks
on every stages of any new creation, data entry or
update so that the user cannot enter the invalid data,

which can build problems at later date.
(iv) Sometimes the user finds bug in the later stages of
using Project that he needs to update some of the
Information that he entered earlier. There are options

for him by which he can update the records. Moreover
there is limitation for his that he cannot change the
primary data field. This keeps the validity of the data to

longer extent.
Current Defect tracking systems do not effectively elicit
all of the information needed by developers. Without

this information developers cannot resolve defects in a
timely fashion and so we consider that improvements to
the way defect tracking systems collect information are

essential. This is likely to speed up the process of
resolving bugs. In the future, I will move from the

current prototype of the interactive system to a full-
scale system that can deal with a variety of information
to gather, as generally observed in the real world. [7],

[10].

REFERENCES

[1].BasicInspectionprocess,

http://www.cs.toronto.edu/~sme/CSC444F/hand

outs/inspection_process_model.pdf

[2]. Gao, Kehan, et al. "Choosing software metrics

for defect prediction: an investigation on feature

selection techniques." Software: Practice and

Experience 41.5 (2011): 579-606.

[3].Introduction,http://www.mks.com/solutions/disc

ipline/dm/defectmanage ment?gclid

[4]. Jalote, Pankaj, and Naresh Agrawal. "Using

defect analysis feedback for improving quality and

productivity in iterative software development."

Information and Communications Technology,

2005. Enabling Technologies for the New

Knowledge Society: ITI 3rd International

Conference on. IEEE, 2005.

[5]. Kalinowski, Marcos, David N. Card, and

Guilherme H. Travassos. "Evidence-based

guidelines to defect causal analysis." Software,

IEEE 29.4 (2012): 16-18.

[6]. Kocher, Paul, et al. "Introduction to differential

power analysis." Journal of Cryptographic

Engineering 1 (2011): 5-27.

[7]. Kumaresh, Sakthi, and R. Baskaran. “Defect

analysis and prevention for software process

quality improvement”. International Journal of

Computer Applications (0975–8887) Volume

(2010).

[8]. Lauesen, Soren, and Otto Vinter. “Preventing

requirement defects: An experiment in process

improvement” Requirements Engineering 6.1

(2001): 37-50.

[9]. Life Cycle,

http://www.softwaretestingstuff.com/2008/05/bug-

life-cycle.html.

[10]. Maintenance and Environment, Conclusion

http://www.onestoptesting.com/test-cases/defect-

tracking.asp

[11]. R.B. Lenin & R.B. Govindan,” Predicting

Bugs in Distributed Large Scale Software Systems

Development”, 2008.

[12]. Stephen Blair, “A Guide to Evaluating a Bug

Tracking System”, October, 2004.

[13].Trajkov Marko & Smiljkovic Aleksandar, “A

Survey of Bug Tracking Tools”, 2006.

